
1

Introduction to
NERSC Resources

Computer Sciences Summer Student Program
June 3, 2021

Helen He
NERSC User Engagement Group

2

Some Logistics
● Users are muted upon joining Zoom (can unmute to speak)
● Please change your name in Zoom session

○ to: first_name last_name
○ Click “Participants”, then “More” next to your name to rename

● Click the CC button to toggle captions and View Full Transcript
● GDoc is used for Q&A (instead of Zoom chat)

○ https://tinyurl.com/QA-intro-nersc-resources
● Slides and videos will be available on the Training Event page

○ https://www.nersc.gov/users/training/events/nersc-resources-june-2021/
● Apply for a training account if no NERSC account yet

○ https://iris.nersc.gov/train, and use the 4-letter code "aMAa"

3

Outline
● NERSC and Systems Overview
● Connecting to NERSC
● File Systems
● Software Environment / Building Applications
● Running Jobs
● Data Analytics Software and Services
● NERSC Online Resources
● Hands-on: Compiling and Running Jobs

NERSC and Systems Overview

5

NERSC is the Mission HPC Computing Center for
the DOE Office of Science
● NERSC deploys advanced HPC and data systems for the

broad Office of Science community
● NERSC staff provide advanced application and system

performance expertise to users
● Approximately 7,000 users and 800 projects
● Over 2,000 publications cite using NERSC resources per

year
● Founded in 1974, focused on open science
● Division of Lawrence Berkeley National Laboratory

6

NERSC Systems Roadmap

2013

NERSC-7:
Edison
Multicore
CPU

NERSC-8: Cori
Manycore CPU
NESAP Launched:
transition applications
to advanced
architectures

2016

2024

 NERSC-9:
CPU and GPU nodes
Continued transition of
applications and support
for complex workflows

2021

NERSC-10:
Exa system

2028

Increasingly energy-efficient architectures

NERSC-11:
Beyond
Moore

7

Cori Brings HPC and Data Together

Phase I: 2388 x 32-core Intel Xeon “Haswell” 128 GB DDR4
Also known as “Data Partition” (76,416 cores total)

Phase II: 9688 x 68-core Intel Xeon Phi “KNL” 96 GB DDR4 + 16 GB MCDRAM
 (658,784 total cores)

Gerty Cori: Biochemist and first American woman to win a Nobel Prize in science

Cori: #20 in Nov 2020 (#5 in Nov 2016) Top 500 list

8

NERSC-9 is named after Saul Perlmutter
• Shared 2011 Nobel Prize in Physics

for discovery of the accelerating
expansion of the universe.

• Works at LBL, as a NERSC user

• Supernova Cosmology Project, lead
by Perlmutter, was a pioneer in using
NERSC supercomputers combine
large scale simulations with
experimental data analysis

• Login “saul.nersc.gov”

First NERSC system designed to
meet needs of both large scale
simulation and data analysis from
experimental facilities

9

Perlmutter -- an HPE Cray EX System
Phase I: Arrived, Nov 2020 -Mar 2021

● 1,536 GPU-accelerated nodes
● 1 AMD “Milan” CPU + 4 NVIDIA A100 GPUs

per node
● 256 GB CPU memory and 40 GB GPU high BW

memory
● 35 PB FLASH scratch file system
● User access and system management nodes

Phase II Addition: Arrives later 2021
● 3,072 CPU only nodes
● 2 AMD “Milan” CPUs per node
● 512 GB memory per node
● Upgraded high speed network
● CPU partition will match or exceed

performance of entire Cori system

● Perlmutter dedication was on May 27

● NERSC staff are continuously configuring the
Phase 1 system

● Users will be enabled in multiple phases

10

NERSC Systems

Cori
9,600 Intel Xeon Phi “KNL” manycore nodes
2,000 Intel Xeon “Haswell” nodes
700,000 processor cores, 1.2 PB memory
Cray XC40 / Aries Dragonfly interconnect

28 PB
Scratch

700 GB/s

2 PB
Burst Buffer

1.5 TB/s

75 PB
/cfs

275 TB
/home

100 GB/s

5 GB/s

DTNs, Spin, Gateways

2 x 10 Gb/s
2 x 100 Gb/s
SDN

HPSS
Tape
Archive
~200 PB

50 GB/s

Ethernet & IB Fabric
Science Friendly Security
Production Monitoring

Power Efficiency

WAN

NERSC Systems

Connecting to NERSC

12

Multi-Factor Authentication (MFA) and sshproxy
● NERSC password + OTP ("One-Time Password")

○ OTP obtained via the “Google Authenticator” app on your
smartphone

○ Alternative/backup option: Authy on desktop https://authy.com/
● MFA is used in login to NERSC systems, web sites, and

services
○ Setup MFA https://docs.nersc.gov/connect/mfa/

● sshproxy.sh creates a short-term certificate
○ Run sshproxy.sh once, then you can ssh to NERSC systems for

the next 24 hours before being asked for password+OTP again
○ https://docs.nersc.gov/connect/mfa/#sshproxy

https://docs.nersc.gov/connect/mfa/
https://docs.nersc.gov/connect/mfa/#sshproxy

13

SSH and MFA Examples
<laptop>$ ssh -l elvis cori.nersc.gov
…
Login connection to host cori01 :
Password + OTP:

You will login to one of the login nodes (12 on
Cori).

To allow X-forwarding to access visualization
programs, use the “-Y” flag:
localhost% ssh -l elvis -Y cori.nersc.gov
 e/elvis> module load matlab
 e/elvis> matlab
 <MATLAB starts up>

14

Connecting to NERSC: NX
● NERSC recommends using NX instead

of SSH X-forwarding since NX is faster
and more reliable

● NX is a service for Accelerated X
● NX also has the benefit of long lasting

terminal sessions that can survive
between lost internet connections
○ Can reconnect later, even from a

different location or computer
● Download and install the Client software:

NoMachine
○ https://docs.nersc.gov/connect/nx
○ Works on Window/Mac/Linux

don't save the password (it
changes every login!)

MFA OTP immediately after
password (no spaces)

https://docs.nersc.gov/connect/nx

15

NoMachine

16

Terminal in Jupyter
You can access Cori from any web browser, via https://jupyter.nersc.gov

Terminal

https://jupyter.nersc.gov

File Systems and Data
Management / Transfer

18

Simplified NERSC File Systems

Memory

Burst Buffer

Scratch

Community

HPSS

Performance

Capacity

Global Common

Global Home

1.8 PB SSD Burst Buffer on Cori
Cray Datawarp 1.8 TB/s,
temporary for job or campaign

28 PB (Cori) HDD Scratch
Lustre 700 GB/s,
temporary (12 wk purge)

157 PB HDD Community
Spectrum Scale (GPFS)
150 GB/s, permanent

150 PB Tape Archive
HPSS Forever

20 TB SSD Software
Spectrum Scale
Permanent
Faster compiling / Source Code

19

Global File Systems
 Global Home
● Permanent, relatively small

storage
● Mounted on all platforms
● NOT tuned to perform well for

parallel jobs
● Quota cannot be changed
● Snapshot backups (7-day history)
● Perfect for storing data such as

source code, shell scripts

 Community File System (CFS)
● Permanent, larger storage
● Mounted on all platforms
● Medium performance for parallel

jobs
● Quota can be changed
● Snapshot backups (7-day history)
● Perfect for sharing data within

research group

20

Local File Systems
 Scratch
● Large, temporary storage
● Optimized for read/write

operations, NOT storage
● Not backed up
● Purge policy (12 weeks)
● Perfect for staging data and

performing computations

 Burst Buffer
● Temporary storage
● High-performance SSD file

system
● Perfect for getting good

performance in I/O-constrained
codes

21

HPSS: Long Term Storage System

● High-Performance Storage System
● Archival storage of infrequently accessed data
● Use hsi and htar to put/get files between NERSC

computational systems and HPSS
● https://docs.nersc.gov/filesystems/archive/

https://docs.nersc.gov/filesystems/archive/

Software Environment and
Building Applications

23

Software
● Cray supercomputers OS is a version of Linux
● Compilers are provided on machines
● Libraries: many libraries provided by vendor and by NERSC
● Applications: NERSC compiles and supports many software

packages (such as chemistry and materials sciences
packages) for our users

● DOE Extreme-scale Scientific Software Stack (E4S):
open-source projects, including xSDK, dev-tools,
math-libraries, compilers, and more

●
●

24

Modules Environment
● Modules are used to manage the user environment

○ https://docs.nersc.gov/environment/#nersc-modules-environment
module

list To list the modules in your environment

avail

avail -S

To list available modules
 To see all available modules: % module avail
 To see all available netcdf modules: % module avail –S netcdf

load/unload To load or unload module

show/display To see what a module loads

whatis Display the module file information

swap/switch To swap two modules
For example: to swap architecture target from Haswell to KNL
% module swap craype-haswell craype-mic-knl

help General help: $module help
Information about a module: $ module help PrgEnv-cray

t

https://docs.nersc.gov/environment/#nersc-modules-environment
https://docs.nersc.gov/environment/#nersc-modules-environment

25

Default Loaded Modules

5) Compiler 8) Cray Scientific Libraries
20) Programing Environment 21) Target architecture Driver 22) MPI Libraries

yunhe@cori03:~> module list
Currently Loaded Modulefiles:
 1) modules/3.2.11.4 13)
gni-headers/5.0.12.0-7.0.1.1_6.27__g3b1768f.ari
 2) nsg/1.2.0 14) xpmem/2.2.20-7.0.1.1_4.8__g0475745.ari
 3) altd/2.0 15) job/2.2.4-7.0.1.1_3.34__g36b56f4.ari
 4) darshan/3.1.7 16) dvs/2.12_2.2.156-7.0.1.1_8.6__g5aab709e
 5) intel/19.0.3.199 17) alps/6.6.57-7.0.1.1_5.10__g1b735148.ari
 6) craype-network-aries 18) rca/2.2.20-7.0.1.1_4.42__g8e3fb5b.ari
 7) craype/2.6.2 19) atp/2.1.3
 8) cray-libsci/19.06.1 20) PrgEnv-intel/6.0.5
 9) udreg/2.3.2-7.0.1.1_3.29__g8175d3d.ari 21) craype-haswell
 10) ugni/6.0.14.0-7.0.1.1_7.32__ge78e5b0.ari 22) cray-mpich/7.7.10
 11) pmi/5.0.14 23) craype-hugepages2M
 12) dmapp/7.1.1-7.0.1.1_4.43__g38cf134.ari

26

Cross-Compile is Needed
● Cori: Haswell compute nodes and KNL compute nodes
● All Cori login nodes are Haswell nodes
● We need to cross-compile

○ Directly compile on KNL compute nodes is very slow
○ Compiles on login nodes; Executables runs on compute nodes

● Recommends to build separate binaries for each architecture
to take advantage of optimizations unique to processor type

27

Software Environment
● Available compilers: Intel, GNU, Cray
● Use compiler wrappers to build. It calls native compilers for each

compiler (such as ifort, mpiicc, etc.) underneath.
○ Do not use native compilers directly.
○ ftn for Fortran codes: ftn my_code.F90
○ cc for C codes: cc my_code.c
○ CC for C++ codes: CC my_code.cc

● Compiler wrappers add header files and link in MPI and other
loaded Cray libraries by default
○ Builds applications dynamically by default. Can add “-static” to build

statically if chosen

28

How to Compile for KNL
● The default loaded architecture target module is

“craype-haswell” on the Haswell login nodes.
○ This module sets CRAY_CPU_TARGET to haswell

● Best recommendation to build for KNL target
○ module swap craype-haswell craype-mic-knl
○ The above sets CRAY_CPU_TARGET to mic-knl

29

Building Simple Test Program (1)
● To build on Cori Haswell:

○ Using default Intel compiler:
ftn -o mytest mytest_code.F90

○ Using Cray compiler:
module swap PrgEnv-intel PrgEnv-cray
ftn -o mytest mytest_code.F90

30

Building Simple Test Program (2)
● To build on Cori KNL

○ Using default Intel compiler
module swap craype-haswell craype-mic-knl
cc -o mytest mytest_code.c

○ Using Cray compiler
module swap PrgEnv-intel PrgEnv-cray
module swap craype-haswell craype-mic-knl
cc -o mytest mytest_code.c

Running Jobs

32

Jobs at NERSC
● Most are parallel jobs (10s to 100,000+ cores)
● Also a number of “serial” jobs

○ Typically “pleasantly parallel” simulation or data analysis
● Production runs execute in batch mode
● Our batch scheduler is SLURM
● Typical run times are a few to 10s of hours

○ Limits are necessary because of MTBF and the need to
accommodate 7,000 users’ jobs

33

Login Nodes and Compute Nodes
● Login nodes (external)

○ Edit files, compile codes, submit batch jobs, etc.
○ Run short, serial utilities and applications
○ Cori has Haswell login nodes

● Compute nodes
○ Execute your application
○ Dedicated resources for your job
○ Cori has Haswell and KNL compute nodes
○ Binaries built for Haswell can run on KNL nodes, but not vice

versa

34

Launching Parallel Jobs with Slurm

sr
un

sbatch
or

salloc

Login Node

Head Compute
Node

Other Compute Nodes
allocated to the job

Head compute node:
● Runs commands in batch script
● Issues job launcher “srun” to start parallel

jobs on all compute nodes (including itself)

Login node:
● Submit batch jobs via sbatch or salloc
● Please do not issue “srun” from login nodes
● Do not run big executables on login nodes

35

My First “Hello World” Program
my_batch_script:

#!/bin/bash
#SBATCH -q debug
#SBATCH -N 2
#SBATCH -t 10:00
#SBATCH -C haswell
#SBATCH -L SCRATCH
#SBATCH -J myjob
srun -n 64 ./helloWorld

To run via batch queue
% sbatch my_batch_script
To run via interactive batch
% salloc -N 2 -q interactive -C haswell -t 10:00
<wait_for_session_prompt. Land on a compute node>
% srun -n 64 ./helloWorld

36

Sample Cori Haswell Batch Script - MPI
#!/bin/bash
#SBATCH -q regular
#SBATCH -N 40
#SBATCH -t 1:00:00
#SBATCH -C haswell
#SBATCH -L SCRATCH
#SBATCH -J myjob

srun -n 1280 -c 2 --cpu_bind=cores ./mycode.exe

● There are 64 logical CPUs (the number Slurm sees) on each node
● “-c” specifies #_logical_CPUs to be allocated to each MPI task
● --cpu-bind is critical especially when nodes are not fully occupied

32 MPI tasks per node
in this example

37

 Sample Cori Haswell Batch Script - Hybrid
MPI/OpenMP

#!/bin/bash
#SBATCH -q regular
#SBATCH -N 40
#SBATCH -t 1:00:00
#SBATCH -C haswell

export OMP_NUM_THREADS=8
export OMP_PROC_BIND=true
export OMP_PLACES=threads

srun -n 160 -c 16 --cpu-bind=cores ./mycode.exe

● Set OMP_NUM_THREADS
● Use OpenMP standard settings for process and thread affinity
● Again, “-c” specifies #_logical_CPUs to be allocated to each MPI task

○ with 4 MPI tasks per node on Haswell, set 64 logical CPUs /4 =16 for ”-c”
○ “-c” value should be >= OMP_NUM_THREADS

4 MPI tasks per node
 in this example

38

Process / Thread / Memory Affinity
● Correct process, thread and memory affinity is critical for getting

optimal performance on Cori Haswell and KNL
○ Process Affinity: bind MPI tasks to CPUs
○ Thread Affinity: bind threads to CPUs allocated to its MPI process
○ Memory Affinity: allocate memory from specific NUMA domains

● Both -c xx and --cpu-bind=cores are essential, otherwise
multiple processes may land on the same core, while other
cores are idle, hurting performance badly

● Pay special attention on KNL, usually we waste (or aside for
OS) 4 cores on purpose, to allow number of logical cores
distributed evenly for each MPI rank

● https://docs.nersc.gov/jobs/affinity/

https://docs.nersc.gov/jobs/affinity/

39

Cori Haswell Compute Nodes

● Each Cori Haswell node has 2 Intel Xeon 16-core Haswell processors
○ 2 NUMA domains (sockets) per node, 16 cores per NUMA domain. 2 hardware

threads per physical core.
○ NUMA Domain 0: physical cores 0-15 (and logical cores 32-47)

NUMA Domain 1: physical cores 16-31 (and logical cores 48-63)
● Memory bandwidth is non-homogeneous among NUMA domains

To obtain processor info:

Get on a compute node:
% salloc -N 1 -C …

Then:
% numactl -H
or % cat /proc/cpuinfo
or % hwloc-ls

40

Cori KNL Example Compute Nodes
● A Cori KNL node has 68 cores/272 CPUs, 96 GB DDR memory, 16 GB high bandwidth on

package memory (MCDRAM)
● Default mode is: quad, cache

● A quad,cache node (default setting) has only 1 NUMA node with all CPUs
on the NUMA node 0 (DDR memory). MCDRAM is hidden from the
“numactl -H” result since it is a cache.

41

Sample Job Script to Run on KNL Nodes

● Again, specify #_logical_CPUs to be allocated to each MPI task
○ with 64 MPI tasks per node on KNL, set 256 logical CPUs /64 =4 for ”-c”

42

Use “shared” QOS to Run Serial Jobs
● The “shared” QOS allows multiple executables from different users to share a

node
● Each serial job run on a single physical core of a “shared” node
● Up to 32 (Cori Haswell) jobs from different users depending on their memory

requirements
#SBATCH -q shared
#SBATCH -t 1:00:00
#SBATCH --mem=4GB
#SBATCH -C haswell
#SBATCH -J my_job
./mycode.x

● Only available on Cori Haswell, charged by a fraction of a node used
● https://docs.nersc.gov/jobs/best-practices/#serial-jobs

https://docs.nersc.gov/jobs/best-practices/#serial-jobs

43

Use salloc to Run Debug and Interactive Jobs
● You can run small parallel jobs interactively on dedicated nodes
● Debug

○ Max 512 nodes, up to 30 min
% salloc -N 20 -q debug -C haswell -t 30:00

● Interactive (highly recommend to use this!!)
○ Instant allocation (get nodes in 6 min or reject)
○ Max walltime 4 hrs, up to 64 nodes total on Cori per project

% salloc -N 2 -q interactive -C knl -t 2:00:00
○ More information (such as how to find out who in your project is using)

■ https://docs.nersc.gov/jobs/examples/#interactive
■ https://docs.nersc.gov/jobs/interactive/

https://docs.nersc.gov/jobs/examples/#interactive
https://www.nersc.gov/users/live-status/

44

Advanced Running Jobs Options
● Bundle jobs (multiple “srun”s in one script, sequentially or

simultaneously)
● Use job dependency features to chain jobs
● Use Job Arrays to manage collections of similar jobs
● Run variable-time jobs and “flex” qos to run longer jobs
● Use workflow tools to manage jobs
● Use Burst Buffer for faster IO
● Use Shifter for jobs with custom user environment
● Use “xfer” for transferring to/from HPSS
● Use “bigmem” for large memory jobs

45

Bundle Jobs
Multiple Jobs Sequentially:
#!/bin/bash
#SBATCH -q regular
#SBATCH -N 100
#SBATCH -t 12:00:00
#SBATCH -J my_job
#SBATCH -o my_job.o%j
#SBATCH -L project,SCRATCH
#SBATCH -C haswell

srun -n 3200 ./a.out
srun -n 3200 ./b.out
srun -n 3200 ./c.out

Multiple Jobs Simultaneously:
#!/bin/bash
#SBATCH -q regular
#SBATCH -N 9
#SBATCH -t 12:00:00
#SBATCH -J my_job
#SBATCH -o my_job.o%j
#SBATCH -L project
#SBATCH -C haswell

srun -n 44 -N 2 -c2 --cpu-bind=cores ./a.out &
srun -n 108 -N 5 -c2 --cpu-bind=cores ./b.out &
srun -n 40 -N 2 -c2 --cpu-bind=cores ./c.out &
wait

● Request total number of nodes needed
● No applications are shared on the same nodes
● Make sure to use “&” (otherwise run in sequential) and

“wait” (otherwise job exit immediately)
● https://docs.nersc.gov/jobs/examples/#multiple-parallel-jo

bs-simultaneously

● Request largest number of nodes
needed

● https://docs.nersc.gov/jobs/examples/#
multiple-parallel-jobs-sequentially

https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-simultaneously
https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-simultaneously
https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-sequentially
https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-sequentially

46

Dependency Jobs
cori% sbatch job1
Submitted batch job 1655447

cori06% sbatch --dependency=afterok:5547 job2
or
cori06% sbatch --dependency=afterany:5547 job2

cori06% sbatch job1
submitted batch job 1655447

cori06% cat job2
#!/bin/bash
#SBATCH -q regular
#SBATCH -N 1
#SBATCH -t 1:30:00
#SBATCH -d afterok:1655447
#SBATCH -C haswell
srun -n 16 -c 4 ./a.out

cori06% sbatch job2

https://docs.nersc.gov/jobs/example
s/#dependencies

https://docs.nersc.gov/jobs/examples/#dependencies
https://docs.nersc.gov/jobs/examples/#dependencies

47

Job Arrays
#!/bin/bash
#SBATCH -q regular
#SBATCH -N 1
#SBATCH -t 1:00:00
#SBATCH --array=1-10
#SBATCH -L SCRATCH
#SBATCH -C haswell

cd test_$SLURM_ARRAY_JOB_ID
srun ./mycode.exe

● Better managing jobs, not necessary
faster turnaround

● Each array task is considered a single
job for scheduling

● Use $SLURM_ARRAY_JOB_ID for
each individual array task

https://docs.nersc.gov/jobs/examples/#job-arrays

https://docs.nersc.gov/jobs/examples/#job-arrays

48

Use Workflow Management Tools
● These tools can help data-centric science to automate moving data,

multi-step processing, and visualization at scales.
● Please do not do below!

for i = 1, 10000

 srun -n 1 ./a.out

It is inefficient and overwhelms Slurm scheduler
● Available workflow tools include: GNU parallel, Taskfarmer,

Fireworks, Nextflow, Papermill, etc.
● One usage case is to pack large number of serial jobs into one script
● https://docs.nersc.gov/jobs/workflow-tools/

https://docs.nersc.gov/jobs/workflow-tools/

49

GNU Parallel Is Better Than Shared QOS
elvis@cori07:~> module load parallel

elvis@cori07:~> seq 1 5 | parallel -j 2 'echo \
> "Hello world {}!"; sleep 10; date'
Hello world 1!
Thu Jun 11 00:21:00 PDT 2020
Hello world 2!
Thu Jun 11 00:21:00 PDT 2020
Hello world 3!
Thu Jun 11 00:21:10 PDT 2020
Hello world 4!
Thu Jun 11 00:21:10 PDT 2020
Hello world 5!
Thu Jun 11 00:21:20 PDT 2020
elvis@cori07:~>

● Packed jobs have massively
reduced total queue wait
○ Can also pack single-node

tasks into multiple node jobs
● No risk of Slurm overload
● Run combinations of tasks in

parallel and sequence
● Easy input substitution

○ If you need it, much more
power is available

● Superior to task arrays, too
● https://docs.nersc.gov/jobs/workflow/

gnuparallel/

https://docs.nersc.gov/jobs/workflow/gnuparallel/
https://docs.nersc.gov/jobs/workflow/gnuparallel/

50

NERSC Job Script Generator
https://my.nersc.gov/script_generator.php

51

Monitoring Your Jobs
● Jobs are waiting in the queue until resources are available
● Overall job priorities are a combination of QOS, queue wait time, job size,

wall time request, etc.
● You can monitor with

○ squeue: Slurm native command
○ sqs: NERSC custom wrapper script
○ sacct: Query Completed and Pending Jobs
○ https://docs.nersc.gov/jobs/monitoring/

● On the web
○ https://my.nersc.gov

■ Cori Queues, Queue backlogs, Queue Wait Times (statistics data)
○ https://www.nersc.gov/users/live-status/ 🡺 Queue Look
○ https://iris.nersc.gov the “Jobs” tab

https://docs.nersc.gov/jobs/monitoring/
https://my.nersc.gov/
https://www.nersc.gov/users/live-status/
https://iris.nersc.gov

52

Cori Haswell Queue Policy (as of June 2021)

53

Cori KNL Queue Policy (as of June 2021)

54

Tips for Getting Better Throughput
● Line jumping is allowed, but it may cost more (“premium” QOS)
● Submit shorter jobs, they are easier to schedule

○ Checkpoint to break up long jobs, use variable time and “flex” QOS
○ Short jobs can take advantage of ‘backfill’ opportunities
○ Run short jobs just before maintenance

● Make sure the wall clock time you request is accurate
○ Larger shorter jobs are easier to schedule than long smaller jobs
○ Many users unnecessarily request the largest wall clock time possible as

default
● Check queue backlogs and queue wait times

○ https://my.nersc.gov/backlog.php
○ https://my.nersc.gov/queuewaittimes.php

https://my.nersc.gov/backlog.php
https://my.nersc.gov/queuewaittimes.php

55

Large Jobs Considerations
● sbcast your executables to compute nodes before srun

sbcast --compress=lz4 /path/to/exe /tmp/exe

srun /tmp/exe

https://docs.nersc.gov/jobs/best-practices/#large-jobs
● Consider to build statically to run large jobs

○ There may be considerable startup delays for running large jobs of
dynamic executables

● Consider to use shifter for large jobs using shared libraries
● Consider to use burst buffer for jobs doing large IO

https://docs.nersc.gov/jobs/best-practices/#large-jobs

56

Other Running Jobs Considerations
● Remember to compile separately for each type of compute nodes
● Running jobs from global homes is strongly discouraged

○ IO is not optimized
○ The global homes file system access on compute nodes is much slower than

from $SCRATCH
○ It may also cause negative impact for other users interactive response on the

system

● Consider to put your project’s shared software in
/global/common/software/<project>
○ It is mounted read-only on compute nodes, so has less impact than other

GPFS file systems (global homes or community file system)

● Consider to adopt workflow tools for better managing your jobs

Data Analytics Software and Services

58

Cori’s Data Friendly Features

59

Production Data Software Stack
Capabilities Technologies

Data Transfer + Access

Workflows

Data Management

Data Analytics

Data Visualization

TaskFarmer

60

Data Analytic Software Services
● Globus Online
● Science Gateways
● Databases
● Shifter
● Burst Buffer
● Python
● Jupyter
● Machine Learning / Deep Learning
● Workflows
● And more …

61

Globus Online: Move Data
● https://www.globus.org https://docs.nersc.gov/services/globus/
● The recommended tool for moving data in&out of NERSC

○ Reliable & easy-to-use web-based service:
■ Automatic retries
■ Email notification of success or failure

○ NERSC managed endpoints for optimized data transfers
■ NERSC DTN (dedicated data transfer system), NERS Cori, NERSC

HPSS, etc.
○ Other Center has endpoints
○ Setup Globus Connect Personal to ease transfer between local

system (such as laptop) and NERSC systems
○

https://www.globus.org
https://docs.nersc.gov/services/globus/
https://app.globus.org/file-manager/gcp

62

Globus File Transfer Example

63

Data Transfer General Tips
● Use Globus Online for large, automated or monitored

transfers
● cp, scp, or rsync is fine for smaller, one-time transfers

(<100 MB)
○ But note that Globus is also fine for small transfers

● Use give-and-take to share files between NERSC users
○ % give -u <receiving_user> <file or directory>
○ % take -u <sending_user> <filename>

64

Access for External Collaborators
● Web Portals

○ NERSC supports project-level public http access
■ Project specific area can be created:

/global/cfs/cdirs/<your_project>/www
■ These are available for public access under the URL:

http://portal.nersc.gov/cfs/<your_project>

○ Each repo has a /project space, can publish as above
● Special Science Gateways can be created. Sophisticated ones can be

made with SPIN: https://docs.nersc.gov/services/spin/getting_started/
○ Details at: https://docs.nersc.gov/services/science-gateways/

https://docs.nersc.gov/services/spin/getting_started/
https://docs.nersc.gov/services/science-gateways/

65

● Relational / SQL Databases
○ MySQL and PostgreSQL, good for:

 structured data (have a ‘Schema’)
 Relational (tables of rows and columns)
 Mid-Size, <= several GB in total

● NoSQL / Schema-less Databases
○ MongoDB, good for:

 Un-Structured Data (‘Schema-less’)
 Mid-Size to Large, e.g. 10 GB of Text

● More info and how to request a database:
https://docs.nersc.gov/services/databases/

Databases

https://docs.nersc.gov/services/databases/

66

Shifter

● NERSC R&D effort, in collaboration with Cray, to support
Docker Application images

● “Docker-like” functionality on the Cray and HPC Linux clusters.
Enables users to run custom environments on HPC systems.

● Addresses security issues in a robust way
● Efficient job-start & Native application performance

https://docs.nersc.gov/development/shifter/how-to-use/

https://docs.nersc.gov/development/shifter/how-to-use/

67

Shifter Accelerates Python Applications

68

Create an Image with Docker
FROM ubuntu:14.04
MAINTAINER Shane Canon scanon@lbl.gov
Update packages and install dependencies
RUN apt-update –y && \
 apt-get install -y build-essential

Copy in the application
ADD . /myapp
Build it
RUN cd /myapp && \
 make && make install

Dockerfile

laptop> docker build -t scanon/myapp:1.1 .
laptop> docker push scanon/myapp:1.1

69

Use the Image with Shifter
#!/bin/bash

#SBATCH -N 16 -t 20

#SBATCH --image=scanon/myapp:1.1

module load shifter

export TMPDIR=/mnt

srun -n 16 shifter /myapp/app

cori> shifterimg pull scanon/myapp:1.1
cori> sbatch ./job.sl

Submit script
job.sl

70

Use Burst Buffer for Faster IO
● Cori has 1.8PB of SSD-based “Burst Buffer” to support I/O

intensive workloads
● Jobs can request a job-temporary BB filesystem, or a persistent

(up to a few weeks) reservation for multiple jobs to use

● https://docs.nersc.gov/jobs/examples/#burst-buffer

https://docs.nersc.gov/jobs/examples/#burst-buffer

71

- 71 -

● ‘type=scratch’ – duration just for compute job (i.e. not ‘persistent’)
● ‘access_mode=striped’ – visible to all compute nodes and striped across

multiple BB nodes
● Data ‘stage_in’ before job start and ‘stage_out’ after

#!/bin/bash
#SBATCH –q regular -N 10 -C haswell –t 00:10:00
#DW jobdw capacity=1000GB access_mode=striped type=scratch
#DW stage_in source=$SCRATCH/inputs destination=$DW_JOB_STRIPED/inputs \ type=directory
#DW stage_in source=$SCRATCH/file.dat destination=$DW_JOB_STRIPED/ type=file
#DW stage_out source=$DW_JOB_STRIPED/outputs destination=/lustre/outputs \ type=directory
srun my.x --indir=$DW_JOB_STRIPED/inputs --infile=$DW_JOB_STRIPED/file.dat \
--outdir=$DW_JOB_STRIPED/outputs

Burst Buffer Example

72

Python
● Extremely popular interpreted language, continuing to grow
● Libraries like NumPy, SciPy, scikit-learn commonly used for

scientific analysis
● Are used for ML/DL
● Python is fully supported at NERSC - we use Anaconda

Python to provide pre-built environments and the ability for
users to create their own environments

● Do not use /usr/bin/python, instead:
 module load python
 which already includes basic packages: numpy, scipy, mpi4py

73

Make Your Own Python Conda Environment
● To make a custom env

module load python
conda create -n myenv python=3.7
source activate myenv
conda (or pip) install your_custom_package
###import antigravity
source deactivate myenv

● To use the custom env later
source activate mynev (# does not change your dot file
setup)
or
conda activate myenv (# changes your dot file setup)
<...steps to use this conda env ... >
conda deactivate myenv

74

Options to Run Python Code in Parallel
● Multiprocessing

○ Single node only, process parallelism via a pool of workers
● Dask

○ Single or many nodes, framework to create a group of workers that execute tasks
coordinated by a scheduler, nice visualization tools

● mpi4py
○ Single or many nodes, best performance when used together with a container

(Docker/Shifter)
○ Do not pip install mpi4py or conda install mpi4py, follow instructions at

https://docs.nersc.gov/development/languages/python/mpi4py/#mpi4py-in-your-custo
m-conda-environment

● https://docs.nersc.gov/development/languages/python/scaling-up/

https://docs.nersc.gov/development/languages/python/mpi4py/#mpi4py-in-your-custom-conda-environment
https://docs.nersc.gov/development/languages/python/mpi4py/#mpi4py-in-your-custom-conda-environment
https://docs.nersc.gov/development/languages/python/scaling-up/

75

What is Jupyter?
Interactive open-source web application

Allows you to create and share documents, “notebooks,” containing:
Live code
Equations
Visualizations
Narrative text
Interactive widgets

Things you can use Jupyter notebooks for:
Data cleaning and data transformation
Numerical simulation
Statistical modeling
Data visualization
Machine learning
Workflows and analytics frameworks
Training and Tutorials

76

Your Own Custom Jupyter Kernel
Most common Jupyter question:

“How do I take a conda environment and use it from Jupyter?”

Several ways to accomplish this, here’s the easy one.

 $ module load python
 $ conda create -n myenv python=3.7
 $ source activate myenv
 (myenv) $ conda install ipykernel <other-packages>...
 (myenv) $ python -m ipykernel install --user --name myenv-jupyter

Point your browser to jupyter.nersc.gov.
(You may need to restart your notebook server via control panel).
Kernel “myenv-jupyter” should be present in the kernel list.

77

Additional Customization
{
 "argv": [
 "/global/homes/y/yunhe/jupyter-helper.sh",
 "-f",
 "{connection_file}"
],
 "display_name": "myenv-jupyter2",
 "language": "python",
}

Meanwhile, in jupyter-helper.sh:
#!/bin/bash
export SOMETHING=123
module load texlive
exec python -m ipykernel "$@”

The helper script is the most flexible
approach for NERSC users since it
easily enables modules.

78

Need to request access for exclusive CPU, and GPU nodes

Available Notebook Servers

79

Available Jupyter Kernels

Your own custom
kernels

And many NERSC
provided kernels:
Python, Julia, ML/DL
packages etc.

80

NERSC Deep Learning Software Stack Overview
General strategy:

● Provide functional, performant installations of the
most popular frameworks and libraries

● Enable flexibility for users to customize and deploy
their own solutions

Frameworks:

Distributed training libraries:
● Horovod
● PyTorch distributed
● Cray Plugin

Productive tools and services:
● Jupyter, Shifter

81

How to Use NERSC DL Software Stack
We have modules you can load which contain python and DL libraries:

module load tensorflow/intel-2.1.0-py37

module load pytorch/v1.5.0

Check which software versions are available with:
module avail tensorflow

You can install your own packages on top to customize:
pip install --user MY-PACKAGE

Or you can create your conda environments from scratch:
conda create -n my-env MY-PACKAGES

More on how to customize your setup can be found in the docs (TensorFlow, PyTorch).
We also have pre-installed Jupyter kernels.

https://docs.nersc.gov/analytics/machinelearning/tensorflow/#customizing-environments
https://docs.nersc.gov/analytics/machinelearning/pytorch/#customizing-environments

82

Jupyter for Deep Learning
JupyterHub service provides a rich,
interactive notebook ecosystem on Cori
● Very popular service with hundreds of users
● A favorite way for users to develop ML code

Users can run their deep learning workloads
● on Cori CPU and Cori GPU
● using our pre-installed DL software kernels
● using their own custom kernels

82

https://docs.nersc.gov/services/jupyter/#conda-environments-as-kernels

NERSC Online Resources

84

Online Resources: Classic NERSC Page
● https://www.nersc.gov
● Science, News, Publications
● Contact Us
● Live Status (MOTD):

https://www.nersc.gov/live-status/
motd/

● Training Events:
https://www.nersc.gov/users/train
ing/events/

● YouTube channel: NERSC
● NERSC users Slack channel

○ https://www.nersc.gov/users/NU
G/nersc-users-slack/

https://www.nersc.gov
https://www.nersc.gov/live-status/motd/
https://www.nersc.gov/live-status/motd/
http://www.nersc.gov/users/training/events/
http://www.nersc.gov/users/training/events/
https://www.nersc.gov/users/NUG/nersc-users-slack/
https://www.nersc.gov/users/NUG/nersc-users-slack/

85

Online Resources: NERSC Docs
Technical Documentations

 https://docs.nersc.gov

● Accounts
● IRIS
● Connecting
● Programming
● Running Jobs
● Applications
● Storage Systems
● Analytics
● Performance
● ... https://docs.nersc.gov/getting-started/

https://docs.nersc.gov
https://docs.nersc.gov/getting-started/

86

Online Resources: NERSC Docs
Technical Documentations

 https://docs.nersc.gov

● Getting Started

https://docs.nersc.gov/getting-started/

● IRIS
● Systems
● Connecting
● Environment
● Development
● Running Jobs
● Applications
● Analytics
● Machine Learning
● Performance

...

https://docs.nersc.gov
https://docs.nersc.gov/getting-started/

87

Online Resources: IRIS

● IRIS: NERSC Account Management and Reporting:
https://iris.nersc.gov

○ Change password
○ Change contact info
○ SSH Keys, MFA
○ Check usage info

https://iris.nersc.gov

88

Online Resources: Help Portal

 https://help.nersc.gov
● Submit tickets (ask questions)
● Request forms:

○ Quota Increase
○ Reservations

● Allocation (ERCAP) Requests

Open a ticket

All my tickets

My project’s
open tickets

https://help.nersc.gov/

89

Online Resources: MyNERSC
 https://my.nersc.gov
● Dashboard
● Jobs
● Center Status
● File Browser
● Service Tickets
● Data Dashboard
● Jupyter Hub
● Links to other useful

pages

https://help.nersc.gov/

90

https://my.nersc.gov Leads You to All Sites

iris.nersc.gov

docs.nersc.gov

www.nersc.gov

jupyter.nersc.gov

help.nersc.gov
my disk quota

is cori up?

my jobs

https://my.nersc.gov

91

Online Resources: Cori GPU Documentation
 https://docs-dev.nersc.gov
● GPU nodes

○ Hardware info
○ Slurm access
○ Usage
○ Software

■ Compilers
■ Math libraries
■ Python
■ Shifter
■ Profiling

○ Examples

https://docs-dev.nersc.gov

92

Acknowledgement
● Used / adapted some slides and materials from the

NERSC New user training (June 16, 2020)
○ https://www.nersc.gov/users/training/events/new-user-

training-june-16-2020/

https://www.nersc.gov/users/training/events/new-user-training-june-16-2020/
https://www.nersc.gov/users/training/events/new-user-training-june-16-2020/

Hands-on Exercises

94

Hands-on Exercises
● % cd $SCRATCH
● % cp -r /global/cfs/cdirs/training/2021/CSSS .

○ Notice the space and the last dot in the above command
● % cd CSSS
● Follow:

○ hello-exercise.README
○ matrix-example.README
○ xthi-exercise.README

● References
○ Running Jobs: https://docs.nersc.gov/jobs/
○ Interactive Jobs: https://docs.nersc.gov/jobs/examples/#interactive

https://docs.nersc.gov/jobs/
https://docs.nersc.gov/jobs/

95

Using Compute Node Reservations

● Existing NERSC users are added to “nintern” project
● Cori node reservations available from 2-3:30 pm today
● User reservations with --reservation=xxx -A yyy, where

○ xxx is “intro_haswell” or “intro_knl”
○ yyy is “nintern” (existing users) or “ntrain” (trainxxx users)

96

Thank You

